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The design of piezometer rings 
By K. A. BLAKE 

National Engineering Laboratory, East Kilbride, Glasgow, Scotland 

(Received 24 September 1975) 

A mathematical model is developed with which the reading from a piezometer 
ring may be predicted from the individual wall static measurements and from 
this the conventional form of ring is shown to be unreliable in asymmetrical flow. 
An alternative form of ring known as the Triple-T is analysed and shown to 
provide a true mean pressure in all cases. It is recommended that this form be 
used in all future test work. Tests demonstrating the validity of the theory are 
described. 

1. Introduction 
The piezometer ring is widely used in the field of flow measurement yet its 

behaviour is little understood. It is normally used as a means of providing an 
‘ average ’ pressure reading from four or more static pressure tappings equally 
spaced round the circumference of a pipe or flowmeter. In  some tests it is standard 
procedure to compare a ring reading with readings from the individual tappings 
and normally the ring ‘average ’ proves to be satisfactory. When one tapping 
reading differs significantly from the others i t  is blocked off on the grounds that 
the hole has been incorrectly drilled, and the others are combined to give the 
ring. reading. Under normal calibration conditions this is probably a valid 
assumption but it must be approached with caution in circumstances where the 
flow might be asymmetric. A model is developed here which allows the pressure 
at any point in a piezometer ring to be deduced from the individual tapping 
readings; it is worked out specifically for four tappings but can be extended to 
any number. The model is also used to determine the most suitable method of 
combining individual tappings into a piezometer ring in order to measure the 
mean pressure accurately. 

2. Fluid dynamics of the piezometer ring 
Figure I represents a normal, conventional piezometer ring. In  general, if the 

pressures PI, P2, P3 and P4 are all different there will be a flow into or out of each 
tapping and a flow in each section of the ring. The only limb in which the fluid 
will be a t  rest in steady-state conditions is the one leading to the manometer or 
other pressure-sensing device. Hence there is a dynamic interaction amongst 
the pressures, which complicates calculation of the ring pressure a t  any point. 

Consider now an element of pipe (which may be the tubing of which the ring 
is constructed or indeed the wall tapping itself) containing a steady flow of 
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static pressure 
tapping 

FIGURE 1. Piezometer ring. 

incompressible fluid. A force balance may be written as follows: 

nD2 - 6) dLT = r,nDdL, 

where D is the pipe diameter, dL is the length of the element, P is the pressure 
and 7, is the wall shear stress. Hence 

dPldL = - 4 ~ ~ 1 0 .  (2) 

Now r ,  is proportional to the kinetic energy per unit volume of the fluid, so ( 2 )  
may be rewritten as dPldL = - f 2p V2/D, (3) 

where V is the average velocity in the pipe and f is known as the friction factor. 
Below a Reynolds number Re of about 2000, f is easily shown to be given by 

f = 161Re. ( 4 )  

Hence dP - 16v2pV2 - (-3$~) v, _ -  _--- - 
dL VD D (5) 

where p is the fluid density and v the kinematic viscosity. Combining the terms 
in the bracket to form a constant C and incorporating the minus sign for con- 
venience, one may write 

AP = CALV or AP = R'V, (61, (7) 

where R' is a resistance factor directly proportional to the length of pipe and 
inversely proportional to its area. Alternatively, since the volume flow rate Q 
is the cross-sectional area multiplied by the average velocity, one may write 

-32pv 4Q 
D2 nD2 

more generally 
AP = ~- AL or A P = R Q ,  
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which is more directly analogous to the electrical case: 

E = RI, (10) 
where I is a current and E is a voltage drop. 

The above remarks apply exactly only in the case of steady, developed, 
incompressible flow in straight sections where the flow rate is sufficiently low 
to remain laminar. However this is a reasonable approximation in almost all 
cases of relevance. 
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3. The network model 
It was shown in 5 2 that the pressure losses in the components of a piezometer 

ring can normally be represented by linear resistances. Thus the electrical 
analogy is pressure equivalent to voltage, flow rate equivalent to current and 
the factor R equivalent to resistance, and the simplest form of linear network 
analysis can be used to solve the steady state. Figure 2 shows the equivalent 
electrical circuit. Because the resistances are being treated as linear, the indivi- 
dual contributions in, say, a leg of the ring, including hole, tubing and perhaps a 
stopcock or other fitting, need not be known explicitly, but can be considered 
together as a single resistance. 

The first step in the solution is to redraw the circuit so that the connexions 
can be seen clearly and the nodal points determined. There are five nodes, eight 
branches and four independent loops. These are assigned labels and directions 
as shown in figure 3. 

Now the connexion matrix C which links the eight branch flows to the four 
independent loop flows must be formed. From inspection of figure 3, 

(11) 

(12) 

I qa = 41-44? qb = qZ-ql, qc = %-qZ, qd = q4-% 
qe = q1, qf = q2, qg = 439 qh = q4 

and 9 = Cq', 

where q and q' are column vectors with components qa, .. ., qh and ql, ..., q4 
respectively, 

so C =  

1 0  
- 1  1 

0 - 1  
0 0 -  
1 0  
0 1  
0 0  
0 0  

0 -  
0 
1 

. 1  
0 
0 
1 
0 

The vector P' of the driving pressures is found by inspecting the pressures in 
each loop: 

27 F L M  78 
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R< 

Rl 
FIGURE 2. Electrical analogue of piezometer ring. 

FIGURE 3. Network diagram showing the branch flows qa, . . . , qh and 
their directions and the independent mesh flows ql, . . . , q4. 

Tor the simple case of linear resistances, a11 entries in the imnedance matrix are 
zero except along the main diagonal : 

R =  

R , O  0 0 0 0 0 0 
0 R , O  0 0 0 0 0 
O O R , O O O O O  
0 0 0 R , O  0 0 0 
0 0 0 0 R , O  0 0 
0 0 0 0 0 R , O  0 
0 0 0 0 0 0 R , O  
0 0 0 0 0 0 0 R ,  
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P‘ and R are linked by the equation 

P’ = CTRCq’, (16) 

where CT is the transpose of C. This is equation (9) in more general form. Thus 

- 
1 
0 
0 
1 
0 
0 
0 
1 - 

1 - 1  0 0 1 0 0  
0 1 - 1  0 0 1 0  
0 0 1 - 1 0 0 1  

- 1  0 0 1 0 0 0  

Rl -Rz 0 0 R , O  0 0 

0 R, -R,  0 0 Re 0 0 

0 0 R3 -R, 0 0 R7 0 
-R1 0 0 R4 0 0 0 R, 

g’ 

0 :] RCq’ 

1 

1 0  0 -  
- 1  1 0 

0 - 1  1 
0 0 - 1  
1 0 0  
0 1 0  
0 0 1  
0 0 0  

Let the 4 x 4 matrix in (17) be called A. Then 

9‘ = A-lP’, 

where A-1 is the inverse of A. The solution of (18) allows all the pressures and 
flows to be calculated. 

4. Sample calculations 
Three cases are examined to indicate the overall behaviour of the system: 
(a)  R, = R, = R, = R, = R, = R, = R, = R, = R, 
( b )  R1,2,3,4 R5,6,7,8, 

(c) R1,2,3,4 R5,6,7,8’ 

Case (a) corresponds to a system where the bore of the connecting tubing is the 
same as the diameter of the wall tappings and where the four legs from the 
tappings to the ring are all the same length and are also the same length as the 
four sections of the ring. Case ( b )  is the most common and would normally cover 
small diameter tappings which are very restrictive in comparison with the 
tubing. Case (c) rarely occurs, but might apply to a ring which closely fitted a 
large diameter pipe in which large wall tappings have been drilled. 

In  each case the pressure at the point in the piezometer ring from which the 
connexion to the manometer is taken (point X in figure 3) is calculated. 

27-2 
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Case (a). Equal resistances. Equation (17) gives 

3 .  - 1  0 -1 

A = R [ I l  0 -1 -’ 3 -1 11. 
0 - 1  

0.467 0.200 0.133 0.200 
A-1 = -[ 1 0.200 0.467 0.200 0-133 ] 

R 0.133 0.200 0.467 0.200 
0.200 0.133 0.200 0.467 

So from (18) and (14) 

Hence 

Rq, = 0.467P1, + 0.200P2, + O.l33P,, + 0.200P41, 

Rq, = 0.133P1, + 0.200P2, + 0.467P3,+ O-200P4,, 

where P12 = P,- P2, etc. It may not always be necessary to write down all four 
equations (21) to obtain the desired information. Assume now that the ring 
pressure is measured at the point X ,  midway between the points A and B in 
figure 3. The pressure PA at A is given by 

(21) 
Rq, = 0.200P1, + 0.467P2, + 0*200P3, + 0*133P4,, 

Rq4 = 0.200P1, + 0*l33P2, + 0*200P3, + 0.467P4,, 

PA = pl + (q4 - q1) Rl, (22) 

1.e. P A  = 0*467P1+ 0.200P2 + 0.133Pa + 0.200P4. (23) 

Similarly P’ = 0.200P1 + 0.467P2 + 0.200P3 + 0*133P4, 

pX = + pB), 

i.e. Px = O*333P,+O~333P2+O*167P3+O~167P4. (24) 

The same answer may be arrived at by adding to PA the pressure drop between 
A and X ,  which is 06q1 R,. 

Thus in the equal-resistance case the two tappings closest to the manometer 
lead are twice as important as the others. 

Case (b) .  R1,2,3,4 large. Take 
Rl = R, = R, = R4 = 1OR and R5 = RB = R7 = R8 = R. 

Then - 10 0 -10 

0 -10 -10 ’ 
- 10 0 -10 21 

hence 

and 

0.280 0.244 0.232 0.244 
.-I=-[ 1 0.244 ~ 0.280 0.244 0.232 - 1  

R 0.232 0.244 0.280 0.244 ’ 
0.244 0.232 0.244 0.280 

P A  = 0*28OP1+ 0.244P2 + O.232P3 + O.244P4, 

Px = 0*262P1 + 0.262P2 + o*238P3 + 0*238P4. 
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FIGURE 4. Variation of tapping weighting factor with resistance ratio. 

Thus when the ‘leg’ resistances are relatively large the ring reading is again a 
fairly poor approximation to the true mean value, although it is closer to the 
average of the four pressures than in case (a) .  

Case ( c ) .  B,c,,s, large. Take 

R, = R, = R3 = R4 = R and R5 = R, = R, = R, = lOR. 

(29) 

(30) 

1 0.0845 0.0071 0.0012 0.0071 
1 00071 0.0845 0.0071 0.0012 

R 0.0012 0.0071 0.0846 0.0071 ’ 
0.0071 0.0012 0.0071 0.0845 I A-1 = - 

hence Px = 0.458P1 + 0.458P2 + 0*042P3 + 0*042P4. 
In  this case only the two tappings nearest to the manometer lead make a sig- 
nificant contribution to the ring reading. 

General case. P i p e  4 shows the relationship between the resistance ratio 
Rl/B5 (where Rl = R, = R3 = R4and R, = R6 = B, = B,) and the tapping 
weighting factor $. For symmetrical rings, the ring pressure Px is given by 

Px = ~(p,+p,)+(o.5-$)(p3+p,),  

where Pl and P, are the two nearest tappings. To minimize the likelihood of a 
significant error in the mean value measured this resistance ratio should be as 
high as possible. 
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+ Pring 

FIGURE 5. Triple-T ring. 

FIGURE 6. Network diagram for Triple-T ring. 

5. The Triple-T ring 
An alternative form of ring, used for many years in the Flow Measurement 

Division of NEL, is shown in figure 5.  It was introduced originally as a means 
of reducing the number of T connectors required on rigs where many were in 
use. It was thoroughly tested before being instituted and was found to provide 
a satisfactory average pressure reading. An analysis of this form of ring follows. 

From inspection of the equivalent network diagram of the Triple-T ring 

ph = q 1 ,  q b  = qZ-ql, q C  = ! / 3 - q 2 ¶  qd = q 3 )  qe = q 2 ,  (31) 
(figure 6)) 

thus in (12) 

and with 

0 0  

c = [ - ;  -; 4 
1 0  

R , O  0 0 0 
R, 0 0 

0 0 0  R5 
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( 16) becomes 

R1+R2 -Rz 0 

or p’= - R  R,+R,+R, -R3 [ o z  -22, R3 +R4 

This may be solved immediately, with the usual assumption that 

R, = R2 = R3 = R4 = R 

and R, is unspecified. Then 

I Pi2 = 2Rq1 
p23 = - Rq, + (2R + R5) q2 - Rqs, 
PM = - Rq, + 2Rq3. 

The measured pressure is Px = *(Pa + Ps). Now 

PA = Pz + w 1 -  q 2 ) ,  4 3  = P3 +R(q, - P3) t  

hence PX = g(G + P 3  -b R(q1-q3)). 

From (34) 

and hence 

PI2 - p 3 4  = 2Rq, - 2Rq3, 

qs = 3(2P2 + 2P3 + Pl - Pz - P3 +P4), 

(33) 

(34) 

(351 

that is 

and this form of ring gives a true average reading under all circumstances, 
independent of the value of R,. 

Px = $(& + P2 + P3 + P4) (36) 

6. Experimental verification 
Ximulation of piezometer r ing 

In  most normal circumstances, any discrepancies predicted by the theory will 
be small. Therefore it was decided to attempt to verify the theory in an extreme 
case of asymmetry. The simplest way of obtaining steady but widely differing 
wall static readings was to use four tappings in line down a straight section of 
pipe. These were connected in various ways to form the rings. Nylon tubing of 
4 mm (&in.) bore and appropriate Simplifix fittings were used thoughout. 
Pressures were read from an inverted air-over-water manometer, using a fifth 
downstream tapping as a reference. 

The dominant factor in the behaviour of the normal ring is the ratio of the 
total resistances in the leg (from hole to ring) to the resistances in each section 
of the ring itself. This ratio was varied in two ways. First, the holes were initially 
drilled to be 0-4 mm then were redrilled after testing to 1-6 mm, 3.18 mm and 
4 mm in turn. Second, two sizes of ring were used to vary the ratio. The first had 
a leg length of 800 mm and a ring section length of 245 mm. The second had a leg 
length of 210mm and a ring section length of 1165mm. In  each case a stopcock 
was included in the leg. Brief tests were also carried out on the effect of placing 
the lead from the ring off-centre. Finally the Triple-T was tested. 
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WGURE 7. Key to ring configurations (dimensions where given are in mm). 

Accuracy and repeatability of measurements 

The pressure losses down the pipe and the spacing of the tappings were such 
that low flow rates had to be used to keep the pressure differentials within the 
manometer’s range. This made it  impossible to reset a particular Aow rate with 
much better than 6 yo accuracy. A turbine meter w m  used to set the flow rate 
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and i t  was read at each test point to ensure that the flow rate remained steady 
for most of the tests. 

The fluctuations of fluid level in the manometer limbs varied slightly with flow 
rate and with the tapping or ring being tested. For all cases the uncertainty 
associated with each differential pressure reading may be taken as not exceeding 

3mm, thus when four individual tapping readings are measured there is an 
uncertainty in their mean value of t. 1.5mm. When this is compared with a 
ring reading, the overall uncertainty in the discrepancy may be taken as approxi- 
mately 3.5 mm or a little under 1 yo a t  the flow rate used for most of the tests. 

Results 

The results of these tests are given in table 1, with the key to  the ring configura- 
tions shown in figure 7. Test 1 was the only one made with the extremely small 
hole size of 0.4 mm. The ring reading agreed with the true mean to within the 
experimental uncertainties. The resistance ratio may be calculated very roughly 
from (8) bearing in mind the approximations involved. Let the resistance of a 
1 mm length of 4mm bore tubing be unity. Then the hole resistance (length 
3mm) is 3 x (4/0.4)4 2~ 3 x 104. The resistance ratio is then greater than 102: 1 
and the result is in accord with the prediction in that RJR, is large and the 
discrepancy small. 

Tests 2-5 involved 1.6 mm holes. Tests 2 and 3 used straightforward rings and 
the agreement was again within the experimental uncertainties. Tests 4 and 5 
had the manometer lead off-centre. Test 4, where the lead was close to a tapping 
with a high pressure, had the largest positive error of the set, and in test 5 the 
proximity of a tapping with a low pressure led to the only negative error. For a 
normal-sized standard ring this hole size should be regarded as the largest 
acceptable one for asymmetric flow as the disagreement is comparable with the 
measurement uncertainties. 

Tests 6 and 7 had 3.18 mm holes, a size frequently used in test work. A resist- 
ance ratio of about 4 was expected and significant errors should appear. With 
the lead situated between the two tappings with the lowest pressures, the 
discrepancy was - 2.7 yo, while it was + 2-5 yo with the highest pressures. 

In  tests 8-10 the same holes were involved but were connected to a larger 
ring. The resistance ratio should be much smaller, perhaps below unity, and the 
discrepancies substantial. In  fact disagreement of around 7 yo was found, which 
implies a ratio of about 2: 1, perhaps due to the resistance of the stopcock and 
associated fittings in the leg. 

In  test 11 the hole size was the same as the bore of the tubing, and the con- 
figuration was the same as in test 8. The discrepancy increased to about 10 yo. 

Test 12 involved the same large hole size as test 11 but a Triple-T configuration 
was used. The discrepancy was within the experimental errors. 

A further Triple-T ring was then constructed and a series of tests carried out, 
These gave discrepancies of between - 1.6 and - 2.3 yo of the mean values. It 
was concluded that there was a fault in the construction of the ring, for example 
that one of the Simplifix connexions had been overtightened, thus distorting 
the tubing. The increased resistance in that limb would cause that tapping to 
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mm H,O 
-, Discrepancv 

Mean of 
tappings 

M 

R-- M" Configura- 
tion (see Tapping Static 
figure 7) number pressure Test Hole size 

1 0.4 mm 
(0.016h.) 

R ( %) 

65 1 
515 
369 
24 1 

700 
527 
369 
207 

695 
526 
368 
206 

687 
542 
389 
253 

700 
553 
397 
259 

444 439 - 1.1 

1.6mm 
(0.0625 in.) 

451 456 + 1.1 

1.6 mm 449 45 1 + 0.5 

1-6mm 468 474 + 1-3 

47 6 - 0.2 477 

3.18mm 
(0.125in.) 

375 365 - 2.7 1 59 1 
2 444 
3 234 
4 231 

i(f) 1 627 
2 47 1 
3 245 
4 248 

398 3.18mm 408 + 2.5 

3.18mm ii(d 1 624 
2 467 
3 234 
4 246 

ii(h) 1 624 
2 467 
3 237 
4 246 

ii(j) 1 63 1 
2 47 3 
3 237 
4 249 

ii(d 1 662 
2 439 
3 357 
4 229 

393 425 + 7.1 8 

9 

10 

11 

394 419 + 6.5 3.18mm 

3.18mm 397 368 - 7.3 

463 + 9.7 4.0 mm 
(0.157in.) 

422 
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Test 

12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

mm H,O 
f 

h , Discrepancy 

Configura- Mean of 100r+y 
tion (see Tapping Static tappings readmg 

Hole size fiigure 7) number pressure M R (%) 

4.0 mm iii(k) 1 690 440 437 - 0.7 
2 456 
3 373 
4 240 

- 396 
246 

- 688 
- 242 
- 428 
- 717 
- 250 
- 265 
- 251 
- 393 

- 

TABLE 1. Test results 

398 
244 
689 
240 
428 
718 
250 
266 
251 
395 

+ 0-5 
- 0.8 
+ 0.1 
- 0.8 

0 
+0*1  

0 
+ 0-4 

0 
+ 0.5 

make a smaller contribution to the ring reading. This hypothesis was tested 
by reconnecting the leads to the tappings in the reverse order. The resulting 
discrepancies fell within the same range as before in magnitude but were of 
opposite sign, confirming that one tapping was not making its full contribution 
because of an extra resistance in the associated limb of the ring. 

A further ring of the same dimensions was then constructed from new tubing 
and fittings, and carefully supported to prevent it from distorting under its own 
weight. A series of tests was conducted at low, medium and high pressure 
differentials; tests summarized in table 1 as tests 13-22. In  no test did the dis- 
crepancy exceed a 2 mm H,O differential, and the mean discrepancy over the 
set was + 0.3 mm with a root-mean-square deviation of 1.3 mm. The standard 
error of the mean was 0.43. 

Thus it may be concluded that the Triple-T ring gives a true average reading 
and that the predictions of the theory are confirmed. 

7. Discussion 
It is clear from the theory, supported by test results, that the normal form of 

piezometer ring is unsuitable for use in asymmetrical flow where a mean pressure 
measurement is required. It is also unsuitable as a consistent reference, for the 
pattern of the asymmetry will normally vary with the flow rate. Even under the 
best circumstances, where the hole is extremely small, the ‘mean’ is approximate, 
and the small size may have attendant disadvantages. In  the particular case of a 
pipe or equipment of large diameter with relatively large tapping holes, a closely 
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fitting normal ring should be avoided even if the flow is believed to be sym- 
metrical and well behaved. Since the ideal Triple-T codguration gives a true 
mean in all circumstances, it is recommended that this form be used in all tests. 

An important point, which emerged from the experimental work, is the need 
to construct the ring carefully to achieve this ideal. The tubing of the ring and 
leads generally contributes very little to  the resistances, which come mainly 
from the holes, T-pieces and other fittings. Slight variations in the lengths of 
nominally identical pieces of tubing are most unlikely to have a significant 
influence on the results. However it iswise to construct any form of ring accurately, 
aiming for good symmetry and ensuring that tubing and fittings are not distorted 
at connexions. 

8. Conclusions 
A mathematical model of the conventional piezometer ring has been developed 

which shows good agreement with test results and demonstrates that this form 
of ring is unreliable in asymmetric flow. An alternative form of ring was shown 
to  give a true mean pressure reading, provided care is taken in its construction, 
and is recommended for general use. 

This paper is contributed by permission of the Director, National Engineering 
Laboratory, Department of Industry. It is Crown copyright reserved. 


